منابع مشابه
On Hilbert Golab-Schinzel type functional equation
Let $X$ be a vector space over a field $K$ of real or complex numbers. We will prove the superstability of the following Go{l}c{a}b-Schinzel type equation$$f(x+g(x)y)=f(x)f(y), x,yin X,$$where $f,g:Xrightarrow K$ are unknown functions (satisfying some assumptions). Then we generalize the superstability result for this equation with values in the field of complex numbers to the case of an arbitr...
متن کاملStability of additive functional equation on discrete quantum semigroups
We construct a noncommutative analog of additive functional equations on discrete quantum semigroups and show that this noncommutative functional equation has Hyers-Ulam stability on amenable discrete quantum semigroups. The discrete quantum semigroups that we consider in this paper are in the sense of van Daele, and the amenability is in the sense of Bèdos-Murphy-Tuset. Our main result genera...
متن کاملon hilbert golab-schinzel type functional equation
abstract. let x be a vector space over a field k of real or complex numbers.we will prove the superstability of the following golab-schinzel type equationf(x + g(x)y) = f(x)f(y); x; y 2 x;where f; g are unknown functions (satisfying some assumptions). then we generalize the superstability result for this equation with values in the field of complex numbers to the case of an arbitrary hilbert spac...
متن کاملOn the associativity functional equation
Let [a, b] be any bounded closed real interval. The class of all continuous, nondecreasing, associative functions M : [a, b] → [a, b] fulfilling the boundary conditions M(a, a) = a and M(b, b) = b is described.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1961
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1961-10560-0